Surface-Enhanced Raman Scattering Study on Graphene-Coated Metallic Nanostructure Substrates.

نویسندگان

  • Qingzhen Hao
  • Bei Wang
  • Jeremy A Bossard
  • Brian Kiraly
  • Yong Zeng
  • I-Kao Chiang
  • Lasse Jensen
  • Douglas H Werner
  • Tony Jun Huang
چکیده

Graphene, which has a linear electronic band structure, is widely considered as a semimetal. In the present study, we combine graphene with conventional metallic surface-enhanced Raman scattering (SERS) substrates to achieve higher sensitivity of SERS detection. We synthesize high-quality, single-layer graphene sheets by chemical vapor deposition (CVD) and transfer them from copper foils to gold nanostructures, i.e., nanoparticle or nanohole arrays. SERS measurements are carried out on methylene blue (MB) molecules. The combined graphene nanostructure substrates show about threefold or ninefold enhancement in the Raman signal of MB, compared with the bare nanohole or nanoparticle substrates, respectively. The difference in the enhancement factors is explained by the different morphologies of graphene on the two substrates with the aid of numerical simulations. Our study indicates that applying graphene to SERS substrates can be an effective way to improve the sensitivity of conventional metallic SERS substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Shielding of Graphene Monolayer Leads to Extraordinary SERS-Active Substrate with Large-Area Uniformity and Long-Term Stability

Surface-enhanced Raman scattering (SERS) can significantly boost the inherently weak Raman scattering signal and provide detailed structural information and binding nature of the molecules on the surface. Despite the long history of this technology, SERS has yet to become a sophisticated analytical tool in practical applications. A major obstacle is the absence of high-quality and stable SERS-a...

متن کامل

Size- and morphology-dependent optical properties of ZnS:Al one-dimensional structures

Typical morphology substrates can improve the efficiency of surface-enhanced Raman scattering; the need for SERS substrates of controlled morphology requires an extensive study. In this paper, one-dimensional ZnS:Al nanostructures with the width of approximately 300 nm and the length of tens um, and micro-scale structures with the width of several um and the length of tens um were synthesized v...

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain.

Metallic nanostructures are widely used for surface-enhanced Raman spectroscopy (SERS). Nanoscale surface corrugation significantly affects the localized plasmon response and the subsequent Raman intensity of the molecules in close proximity to the nanostructures. Experimentally, the surface roughness of metal films can be controlled by adjusting the deposition conditions, and the resulting loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. C, Nanomaterials and interfaces

دوره 116 13  شماره 

صفحات  -

تاریخ انتشار 2012